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What Is quantitative microbial risk
assessment (QMRA)?

Hazard Identification >>> Dose-Response Assessment




Hazard Identification

e \What is the pathogen of concern?

e \What health endpoints does It cause?

e \What do we know about the organism and how It
IS spread?



Exposure Assessment

e |[sthe pathogen present and at what magnitude?

e How Is It spread from the source to a susceptible
person?

e At what rate does it decay In the environment?

e How do people behave in this environment that
could result in a dose?

e How big do we think that dose Is given what we
know about the system?



(C)

Various
mathematical
approaches for
modeling viral
dispersion,
including
computational
fluid dynamics

Wilson et al. (2021)



Dose-Response Assessment

e Quantitative relationship between dose and
probability of a health endpoint, usually
Infection with the pathogen of interest

e Considerations about which dose-response
curve(s) may be best for our scenario in question

: . dose
Approximate beta — Poisson : Pyfection =~ 1 — (1 )

| Fihypergeometric : Fpfection = 1 —  F1 (o, « + B, —dose).

Van Abel et al. (2017)
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Risk Characterization

 We bring the pieces together to yield a
quantitative probability of the health end point
given what we know about the pathogen and the
enviornmental conditions




What happens next?

e May compare the risk to
thresholds we deem
acceptable

e Inform what concentrations
would be needed to achieve

the risk target
e Explore how interventions
change the predicted risk '

e Perform sensitivity analyses
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Advantages of QMRA

o Useful for estimating the impact of interventions

e Can model scenarios that are difficult or unethical
to observe

e [nsights iInto how exposures may be occurring

e Translating environmental micro data to anticipated
public health burden

e Useful for informing policy and economic analyses,
such as cost-benefit analysis

e Faster and often cheaper than other means of
evaluating disease risks (i.e., epidemiology)



Disadvantages of QMRA

e Risk estimates may be small and, therefore, are
difficult to validate (would have to observe many
many people to see 1 case)

e Exposure models can be difficult to validate

e Assumptions are necessary in the face of missing
data or lack of knowledge

e Uncertainty may be challenging to convey to media
or lay audiences

e Usually requires a multidisciplinary team



Modeling Bioaerosol Exposures

Needed parameters include...

e Partitioning coefficient

e Aerosol size distributions

 Viability of pathogen in aerosols

e Description deposition and settling
on surfaces

e [nhalation rate of workers

e Filtration effectiveness if wearing =
face covering

e [nformation about droplet spray

e Hand-to-surface and -face contact
rates

R DRSS



Accidental Ingestion vs. Dietary Ingestion
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Wastewater Treatment Plant Example



=

Protecting Wastewater Workers by Categorizing Risks of Pathogen
Exposures by Splash and Fecal-Oral Transmission during Routine Tasks

by Rasha Maal-Bared

CGuality Assurance and Environment, EPCOR Water Services Inc., EPCOR Tower, 2000, 10423-101 Street NW,
Edmonton, AB ToH OES, Canada

Waste 2023, 1(1), 95-104; https://doi.org/10.3390/waste1010007

Table 2. Exposure Information including estimates for wastewater contact volumes and aerosol exposures for urban, municipal and industrial WWTP full time equivalents
(FTE).

Urban Municipal Industrial

Exposure Category
FTE Liquid Contact(mL) Aerosol Contact(h) FTE Liquid Contact(mL) Aeroscl Contact(h) FTE Liquid Contact(mL) Aercsol Contact(h)

Type A 15% 3.00 - 14% 3.00 - 10% 3.00 -

Type B 10% 5.00 0.40 2% 5.00 0.40 3% 5.00 0.40
Type C 20% 0.001 0.80 6% 0.003 1.60 % 0.004 1.60
Type D % 0.02 0.80 2% 0.02 0.80 3% 0.03 0.80
Type E 1% 0.09 4.00 <1% 0.06 4.00 <1% 0.08 4.00

Type E1 1% 0.01 - <1% 0.02 - =1% 0.02 -
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Hazard ldentification

Ingestion exposure pathway
e Cryptosporidium hominis
e Fscherichia coli
e Giardia duodenalis
e Norovirus
e Rotavirus

Inhalation exposure pathway
e Adenovirus
e Rhinovirus
e Influenza A virus
e [egionella pneumophila



Exposure Assessment: Pathogen
Concentrations

Collection in Canada over four seasons, 2016-2017
Two plants
o Small municipality
= Serves ~20,000 people
= 10 MLD
o Large/urban
m Serves ~1.1 million
= 310 MLD
Culturable sample collection
o SAS Super 100 dual-head, single-stage multi-hole impactor
(pbi International, Rockville, MD, USA)
Molecular analysis sample collection
o SASS 3100 high flow dry filter air sampler (Research
International Inc., Monroe, WA, USA)
o Electrostatic sampling filter was used






Dose Response

The risk for infection from each pathogen was calculated with a pathogen-specific dose-
response. Three different dose-response model equations were used across the nine
pathogens (Table 2). An exponential dose-response model (Eq. (3)) was used for C.
hominis, E. coli, G. duodenalis, L. pneumophila, adenovirus, and rotavirus. A Beta-Poisson
model (Eq. (4)) was used for rotavirus, rhinovirus, influenza A, and norovirus, and a
fractional Poisson model (Eq. (5)) was also used for norovirus.

Riskiy s =1— e % dos° (3)
Cr
Riskys = 1 — (1 . ﬂf;e) (4)

Riskys — P* (1 e ) (5)



Case studies

Case Study 1: Individual pathogen infection risks given typical
wastewater treatment concentrations

Case 2: C. hominis and L. pneumophila risks for different tasks
Case 3: Gastrointestinal and respiratory infection risks for
exposure during peak vs. non-peak hours

Case 4: Respiratory infection risks for masks, N95 respirators,
and no personal protective equipment (PPE)



Risk Characterization
(Case 1 Results)

Infection Risk

Ingestion and Inhalation Risks
High contact during early morning hours (5am-Sam)
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Other Findings

e Case 2: C. hominis and L. pneumophila risks for different tasks
o Walking the plant posed highest risk

e Case 3: Gastrointestinal and respiratory infection risks for
exposure during peak vs. non-peak hours
o G. duodenalis highest risk during peak and non-peak hours

e Case 4: Respiratory infection risks for masks, N95 respirators,
and no personal protective equipment (PPE)
o N95s = 7/% reduciton in median infection risks for L.
pneumophila



Respiratory Virus in an Ambulance
Example
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Epub 2021 Jun 15.

Respirators, face masks, and their risk reductions via
multiple transmission routes for first responders
within an ambulance
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Sequence of Care Scenarios

Scenaro 1 Scenario 2




Scenario 1 Scenario 2
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As expected, paired respirators/masks are the most effective.
Second most effective is respirators used by first responders, even
though source control is typically seen as the most important.



— Facial Mucosal Membrane Respiratory Tract
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Putting bioaerosol risks in context



Legionella vs. other considerations

1. Flushing
2. Water heater set point change
3. Flushing + water heater set point change

Intervention | Intervention 3 - Key
Water Quality Intervention | 2 - Increasing | Combined flushing and - . _ .
Parameters 1 - Flushing | water heater |increasing water heater Statlst.tcally s;gnlflcan.t nerease in
setpoint setpoint undesired water quality parameter
Metals gont t1 gon ) "°°t"a"°"' gont 13 Statistically significant increase in
opper opper opper desired water quality parameter
DBP (TTHM) s

l Statistically significant decrease In

Chlorine desired water quality parameter

1
: L R
::::“a's } I "' Mixed trends
l

!

Decrease in concentration but not

L. pneumophila tl statistically significant

Joshi S et al. 2023 Water quality trade-offs for risk management interventions in a
green building. Environmental Science: Water Research and Technology



Legionella vs. other considerations

Exposure
Assessment Exposure route Contaminant Endpoint
scenario
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egdionellag vs. other considerations
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Mechanistic-machine learning testbed

The graphs are interpreted with respect to their numbered nodes
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Heida, A et al. 2021 ESWRT



Minimizing a total cost function

Total cost = infection cost + energy cost + scalding cost

Expected costs of infection, scalding, and energy for each set point tested.
Subclinical dose-response results in infection risk being the driving cost with 56°C as the optimal temperature.
Energy is the driving risk with a clinical-severity dose-response model.

Clinical severity dose-response
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How/where to learn more about OMRA?



Opportunity to Learn More about QMRA...

Q%
AMPA

’ Center for Advancing Microbial Risk Assessment

CAMRA (Center for Advancing Microbial Risk Assessment) is a consortium of
international scientists, researchers and students who are interested in risk assessment
for microbial agents and control of infectious diseases. The vision of CAMRA is to be the
global international collaborative for QMRA. The mission of CAMRA is to provide a
network that can link to critical data for running a QMRA, educational opportunities for
QMRA and QMRA case studies.

Quick Links _ L
Project Highlights
« IHERA
« Contact Quantitative Microbial Risk Assessment Interdisciplinary
» QMRA -‘3'1-; Elﬂt sts Instructional Institute Vehicle (QMRA IV)
« Past Workshops
» History of CAMRA Funded by National Institutes of Health

QAMRA IV is an interdisciplinary program for training and mentoring in microbial risk
Supporting Institutions analysis. Participants will gain hands-on experience with real-world case studies to
develop microbial risk analyses to achieve safety and health goals, and will interact
with top scientists in public health, environmental engineering, microbiclogy,
epidemiology, communications, public policy, and QMRA. The course
includes training and mentoring in team science, QMRA, risk communication, risk
management, and more.

The QMRA IV will be held in a hybrid format, and participants are expected to
attend BOTH online and in-person courses:

« June 3 - July 15, 2024 - Virtual Asynchronous and Synchronous Course
« July 21 - 27, 2024 — In-Person Workshop @ Michigan State University, East
Lansing, Ml

Flyer

Apply online: https://levents.anrmsu.edu/QMRAIV2024/
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How do we make use of molecular data (on exposure)
to assess risk?
Coupling of QMRA to disease transmission models for
contagious agents
New/emerging applications: antibiotic resistant
pathogens and genes
Intervene to proactively . Communicating with those who really could benefit
) 2N | prevent disease from the approach
i ; , \ . How to describe exposures to pathogens with other
- T el & stressors (either other pathogens or chemical or

Leveraging High-throughput in Dose response Predict, communicate physical siressors) ,
sequencing methods vivoand in vitro datasets, and manage risks & . More mechanistic models for dynamics of pathogens

e

to aid in scoping & pathogenicity scenario-specific risk-based targets to within hosts
prioritizing hazards evaluation morbidity ratios and prevent adverse . How to describe repeated exposures?
DALY values outcomes . Best practices for doing QMRA on Agent “X”
Emission rates of pathogens: is there a unified
framework that can be developed?
. New/emerging applications: animal pathogens
. What about fungi?
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